Development of an open-tubular trypsin reactor for on-line digestion of proteins

نویسندگان

  • E. C. A. Stigter
  • G. J. de Jong
  • W. P. van Bennekom
چکیده

A study was initiated to construct a micro-reactor for protein digestion based on trypsin-coated fused-silica capillaries. Initially, surface plasmon resonance was used both for optimization of the surface chemistry applied in the preparation and for monitoring the amount of enzyme that was immobilized. The highest amount of trypsin was immobilized on dextran-coated SPR surfaces which allowed the covalent coupling of 11 ng mm(-2) trypsin. Fused-silica capillaries were modified in a similar manner and the resulting open-tubular trypsin-reactors having a pH optimum of pH 8.5, display a high activity when operated at 37 degrees C and are stable for at least two weeks when used continuously. Trypsin auto-digestion fragments, sample carry-over, and loss of signal due to adsorption of the protein were not observed. On-line digestion without prior protein denaturation, followed by micro-LC separation and photodiode array detection, was tested with horse-heart cytochrome C and horse skeletal-muscle myoglobin. The complete digestion of 20 pmol microL(-1) horse cytochrome C was observed when the average residence time of the protein sample in a 140 cm x 50 microm capillary immobilized enzyme reactor (IMER) was 165 s. Mass spectrometric identification of the injected protein on the basis of the tryptic peptides proved possible. Protein digestion was favorable with respect to reaction time and fragments formed when compared with other on-line and off-line procedures. These results and the easy preparation of this micro-reactor provide possibilities for miniaturized enzyme-reactors for on-line peptide mapping and inhibitor screening.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Recyclable Poly(ionic liquid)s Enzyme Reactor for Highly Efficient Protein Digestion

One of the most significant tasks for proteomic research and industrial applications, is the preparation of recyclable enzyme reactor. Herein, a novel recyclable enzyme reactor has been developed based on monodispersed spherical poly(quaternary ammonium ionic liquid)s particles immobilized trypsin. A new quaternary ammonium ionic liquids functional monomer was first synthesized. The ionic l...

متن کامل

Integrated enzyme reactor and high resolving chromatography in “sub-chip” dimensions for sensitive protein mass spectrometry

Reliable, sensitive and automatable analytical methodology is of great value in e.g. cancer diagnostics. In this context, an on-line system for enzymatic cleavage of proteins, subsequent peptide separation by liquid chromatography (LC) with mass spectrometric detection has been developed using "sub-chip" columns (10-20 μm inner diameter, ID). The system could detect attomole amounts of isolated...

متن کامل

A capillary electrophoresis-based immobilized enzyme reactor using graphene oxide as a support via layer by layer electrostatic assembly.

A novel capillary electrophoresis (CE)-based immobilized enzyme reactor (IMER) using graphene oxide (GO) as a support was developed by using a simple and reliable immobilization procedure based on layer by layer electrostatic assembly. Using trypsin as a model enzyme, the performance of the fabricated CE-based IMERs was evaluated. Various conditions, including trypsin concentration, trypsin coa...

متن کامل

Gold Nanoparticle Assembly Microfluidic Reactor for Efficient On-line Proteolysis*□S

A microchip reactor coated with a gold nanoparticle network entrapping trypsin was designed for the efficient on-line proteolysis of low level proteins and complex extracts originating from mouse macrophages. The nanostructured surface coating was assembled via a layer-bylayer electrostatic binding of poly(diallyldimethylammonium chloride) and gold nanoparticles. The assembly process was monito...

متن کامل

Gold nanoparticle assembly microfluidic reactor for efficient on-line proteolysis.

A microchip reactor coated with a gold nanoparticle network entrapping trypsin was designed for the efficient on-line proteolysis of low level proteins and complex extracts originating from mouse macrophages. The nanostructured surface coating was assembled via a layer-by-layer electrostatic binding of poly(diallyldimethylammonium chloride) and gold nanoparticles. The assembly process was monit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Analytical and Bioanalytical Chemistry

دوره 389  شماره 

صفحات  -

تاریخ انتشار 2007